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Overview

This final report summarizes the theoretical and experimental activities
carried out in joint collaboration by the Quantum Optics Group at Drexel
University and the Nonlinear Dynamics and Laser Physics Group at Bryn Mawr
College during the period October 15, 1985 - August 31, 1987. Although much of
the research conducted under this constract has involved a close interaction between
theorists and experimentalists, for convenience we list the main accomplishments
under separate headings of theory, experiments and special activities.

The following summaries represent highlights of technical results which are
discussed in greater depth in the enclosed publications by the members of our
groups.
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The Role of Transverse Effects in Laser Instabilities

1. Introduction

One of the unexpected features of early laser systems was the appearance of output

pulsations even under steady or nearly steady pumping conditions. In fact, spiking had already

been observed in maser experiments1 even before the discovery of the laser, with the proliferation

of solid state optical devices, this effect acquired the status of a nearly universal feature2 . The

interpretation of these phenomena as direct manifestations of intrinsic dynamic instabilities, linked

to the nonlinear character of the emission should be ranked among the most significant theoretical

advances of the late 1950's and early 1960's3 ,4.

The most common modem framework for the description of laser dynamics is the

plane-wave Maxwell-Bloch model, a formulation flexible enough to conform to most experimental

conditions and capable of yielding a detailed insight into the laser working mechanism. Yet, for all

the important contributions that this model has made to laser physics, it has also shown a consistent

pattern of quantitative and even qualitative disagreement with experimental facts, especially when

the instabilities become a dominant dynamical feature 5 .

An important starting point for our discussion is the recognition that the plane-wave

Maxwell-Bloch equations do predict the existence of instabilities leading to both regular and chaotic

pulsations; this is a well established theoretical fact 6. Thus, homogeneously broadened systems

are known to produce output oscillations when operating both in single and multimode •

configurations, and in and out of resonance, relative to the center of the atomic gain line. Of special

significance is the existence of an isomorphism between the single-mode laser model and the

Lorenz equations6 a. The Lorenz equations, originally derived to simulate the onset of convective S

instabilities 7 , are well known in the mathematical literature as the paradigm of deterministic chaos8 .

Thus, the isomorphism between the laser and the Lorenz equations supports the notion that the

laser itself can be the source of chaotic behavior.
,%
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While the link between the observed laser pulsations and dynamic instabilities is a very

reasonable theoretical proposition, the prediction that these phenomena can occur only for very

large values of the pump parameter, especially under resonant conditions, is the source of major

difficulties with the interpretation of experimental results. Indeed, if one took the theoretical

threshold values too seriously, one would have to conclude that laser instabilities are observable

only under exceptional circumstances.

An additional difficulty with the plane-wave Maxwell-Bloch equations is the unconditional

stability of their rate equations limit. Accepting this result leads to the conclusion that all laser

instabilities are manifestations of atomic coherence, this assertion is hardly in agreement with the

behavior of Ruby, Nd:YAG, CO2 and other lasers for which the validity of the rate equations

description is well justified.

Better agreement between theory and experiments is obtained when the laser undergoes a

phase instability 6g, a phenomenon that requires operation under detuned conditions and which is

responsible, for example, for the observed mode hopping in CO2 laser systems9 . However, the

physical mechanism that drives a phase instability is quite different from that which is operative

under resonant conditions (i.e. the amplitude instability) 10 so that the theory of phase instabilities is

not very helpful in clarifying the nature of the "high second threshold problem". The theory of

inhomogeneously broadened lasers is also in good qualitative agreement with the observed unstable

phenomena 1 1; in this case, the lowering of the second laser threshold to the observed experimental

range 12 is probably due to the large increase in the number of degrees of freedom that are needed to 0

describe the laser dynamics, and offers little clue as to the failing of the homogeneously broadened

i1 r
model.

It is probably fair to say that the plane-wave approximation, long viewed as adequate in 0

capturing the essential aspects of laser dynamics, may be a much stronger theoretical constraint

than anticipated. In fact, important warning signals in this direction came from the lack of

quantitative agreement between the predictions of the plane-wave studies of optical bistability13 and A

ri %ip
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the careful- absolute measurements performed by Kimble and collaborators under steady state

conditions' 4 . If, however, these theoretical propositions were in disagreement with the

experiments in a quantitative way, more serious qualitative discrepancies have emerged from the

study of self-pulsing in bistable systems. Here the plane-wave theory predicts a rich variety of

dynamical behaviors 15 which do not appear to have a counterpart among the observed patterns 16.

The main objective of this research is to produce evidence that transverse degrees of freedom

play a far more important role in laser dynamics than might be expected. In fact, we have known

for some time that transverse effects can have a strong influence on the stationary and dynamic

behavior of passive driven systems17 and that plane-wave and transverse models can approach

chaos by way of very different routes 18. The combined message of a small but growing number

of experimental 19 and theoretical reports2 0 suports the belief that effects related to a departure

from the plane-wave configuration may be even more influential when the optical resonator

contains an active rather than a passive medium. If we accept this premise, the inclusion of

transverse degrees of freedom into the existing theories becomes a necessary requirement for a

successful description of realistic laser systems.

Indeed, several theoretical studies have already attempted to improve on the plane-wave

description. An analysis of the modes and of their spatial stability in a realistic resonator can be

found, for example, in Ref. 21. Reference 22 contains a study of the emission frequency of an

inhomogeneously broadened laser when the field configuration is no longer of the pure Gaussian

type. The problem of laser dynamics in the presence of transverse effects was addressed in Ref. 23

using an approximate set of equations and evidence was presented for the appearance of

self-pulsing. % 1~

A useful alternative approach is based on the assumption that the cavity field maintains a

fixed Gaussian profile during the evolution 17b,24 . On the surface this appears to be a rather crude

approximation because the presence of an active medium may be expected to introduce significant

distortion in the transverse pattern of the field. In the case of passive systems, however, this0
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approach has yielded quite reasonable results2 5, perhaps because of the constraints that the injected

mode-matched signal imposes on the cavity field. The situation is likely to be more critical with

active systems, so that a more realistic approach may be required. In fact, even the simple

Gaussian model of the laser yields remarkable deviations from the plane-wave behavior, the Risken

and Nummedal instability 6bc of the longitudinal sidebands, for example, is suppressed under

resonant conditions if the cavity field has a TEM00 profile24 .

In this study we consider those physical and geometrical features that are absent by definition

from the plane-wave theory. To be specific, we focus on the effects of diffraction, on the

wavefront curvature induced by the spherical mirrors, and on the transverse and longitudinal gain

variations caused by the pump mechanism. It would also be very desirable to consider the effects

of limiting intracavity apertures, but this aspect of the problem is more complicated and has been

ignored in our study.

Of course the mathematical description of this problem is considerably more involved than in

the case of a plane-wave model, and significant theoretical progress is likely to require large-scale ".

numerical calculations when the parameters of the system take on arbitrary values. An unavoidable

drawback of most numerical approaches is that a global understanding usually requires the analysis

of a wide region of the parameter space. For this reason it is much more desirable to investigate 0

transverse effects by analytical means, as much as feasible. Of course this cannot be done for

arbitrary configurations of the laser system. Fortunately it is possible to identify a non-trivial

setting that allows significant theoretical progress with a minimum of numerical labor. Our 0

approach is based on an appropriate extension of the well known uniform field limit 26, a model
P.,-

that has played a major role in defining our current understanding of the plane-wave theories of

active and passive systems. In spite of its idealized nature, the uniform field limit of the

plane-wave model has led to predictions that are in remarkably close qualitative agreement with the

results of the exact linear stability analysis 27 and with the numerical solutions of the

Maxwell-Bloch equations 2 8. It is hoped that the same conclusion will remain valid in the presence

I9 -
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of transverse effects. Much more work, however, will be needed to confirm this conjecture. -

An important consequence of this limit, as we show in this paper, is that the steady state

solutions are of the single-mode type, a conclusion which also implies that the empty cavity modes

are also exact modes of the filled cavity. This statement is true in the plane-wave approximation,

and remains valid in the presence of transverse effects. Thus, at once, the mathematical description

of the problem is simplified to a large extent, and earlier studies based on the single transverse

mode approximation l7e, 24 can be understood in more rigorous terms.

With the assumption that the cavity linewidth is much smaller than the atomic decay rates, the

so called "good cavity" limit, we can describe the emergence of unstable states through a

development that rests almost entirely on analytic grounds; in fact, only the final evaluation of the

rates of evolution of the fluctuation variables requires a numerical computation. The linear stability

analysis leads to one of the most interesting results: the instability thresholds for a fairly realistic

cavity design are much closer to the first laser threshold than predicted by the plane-wave theory,

and are in much better quantitative agreement with the experimental picture. For example, under

appropriate conditions, unstable operation emerges already when the pump parameter is only a few

percent above threshold, while the plane-wave theory requires pump parameter values at least ten

times larger than needed to produce laser emnission.

We show, in addition, that low threshold instabilities can be found also in the full adiabatic

elimination limit, i.e. when the dynamics of the laser is described entiiely by the field equation

(thus "a fortiori" the same conclusion holds in the rate equation lim-it when only the polarization is

eliminated adiabatically). According to this result instabilities are not a necessary consequence of

*atomic coherence, in contrast with the predictions of the plane-wave theory. 'AS

Thle physical setting of the linear stability analysis is the following: with the laser operating in ,a,

steady state, we look for the existence of unstable modes, as evidenced by the appearance of an

exponential growth for the field fluctuations. This approach to the problem is conceptually identical

to the one adopted by Risken and Nummeda, 6 b,c in their classic study of multimode instabilities,

Oro'-
le
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although there are also significant differences, as we shall discuss in the main body of this report.

In Section 2 we construct the empty cavity eigenfunctions and eigenfrequencies for a folded

ring resonator. In Section 3 we describe the extended Maxwell-Bloch model, we introduce the

uniform field limit, and calculate the steady state configuration of the system which we then analyze

for different values of the parameters. In section 4 we outline the details of the linear stability

analysis. In Section 5 we discuss the results of this calculation, give evidence for the existence of

low threshold instabilities, and show how these effects persist even after adiabatic elimination of all

the atomic variables. We conclude, in Section 6, with a brief overview and some general

comments. A preliminary account of this work was published in Ref. 29.

2. The empty cavity modes

This section contains a brief description of a calculation leading to the modal eigenfunctions A

and eigenfrequencies of an empty resonator in the paraxial approximation 3 0 . Its purpose is to

provide a self-contained introduction to the basic tools that have been used in our subsequent

calculations.

The analysis of an empty resonator of length A, as shown in Fig. 1, begins with the

free-field wave equation

I a2

VE(rzt) - T E(r,z,t) = 0 (2.1) ,/'2c at

where z is the coordinate along the axial direction of propagation of the field and r is the radial

coordinate measured from the axis of symmetry of the system. As implied by Eq. (2.1) we

consider a system with cylindrical symmetry.

In the paraxial approximation we seek elementary solutions of the form

i - o,
E - E (rz,t) = Ap(r,z) e (2.2)

In fact, the solutions corresponding to a cylindrically symmetric system should be labelled by two

0.
U%.'
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indices related to the axial and radial degrees of freedom, respectively. We will omit the axial

modal index, for simplicity, except where necessary.

In the slowly varying amplitude approximation, and in terms of the scaled coordinates

l=zL. p- UPr (2.3)

where L is the distance between the curved mirrors, the wave equation takes the form
aAp i 2 1a

(2.4)

whose solutions are

Ap(P, l) = L _ ..- ) exp(- -L) exp{i [9L - (2p+l) tanr1/r1J1
V(," P V2(T) v2 (7) U(71)

p=Ol, 2 ...... (2.5)

The origin of the longitudinal axis is selected at point 0 of Fig. 1 where Ep(p,Tj,t) has a plane-wave

structure. The functions v(11) and u(TI) are defined by

v(r) = (2.6a)

u(1) = (T,2+ 2T) (2.6b)
"1

and r10 = v2(0) = v0
2 is an arbitrary parameter which must be calculated in conformity with the

cavity geometry. Note that with the selected scaling (2.3), rl0 is the Rayleigh range of the

Gauss-Laguerre beam (2.5), while , 1i0 is the beam waist.

The assignment of r10 stems from the following considerations. The beam parameter q(rj)

defined by
1 1 i

+ 2(2.7)
q(11) u(ril) v (i)

satisfies elementary mapping rules under translations and reflections from the curved surfaces.

Beginning with a given beam parameter q0 at position 0, we can easily construct the beam

P %
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parameter q4 after one full loop (Fig. 1). The condition ql = q0 secures that the beam parameter

after one round trip acquires the same starting value.

For simplicity we select a cavity with a high degree of longitudinal symmetry as shown in

Fig. 1. This leads to3 0

2 1 (P-1) (P -+f)
O 2N1 f(l+p0) -1 (2.8)

where P0 
= R/L is the scaled radius of curvature of the spherical mirrors and the parameter f is

defined by IA.

In a similar way we can construct the analytic form of the modal functions Ap(p,r) for

1/2_<AIAL-1/2. The beam waist in this case is given by o

2 1
v2

where q2 is the beam parameter at i = A/2L ( point 2 of Fig. 1). The explicit form of the modal

functions in this range is A,

[ (rl-A/2L)I e(fl
Ap(p,Tn) = Bp[q2(1-A/2L)] exp[- i (2p+l) tan 2 e (2.9)

v2

where, for convenience, we have defined

2 ( (-7-)exp(- P- .2~
B 2(r))2-  L P 2 (2.10)

V 2(7i) V 2(ri) V2(ri) U2(,)

The functions v2(T1) and u2(Tr) are defined by Eqs. (2.6) with 710 replaced by

2(2L) [(1 -P 0 )2++ 1)2] (2.11)

PT0 0

The phase factor exp(ip) measures the shift introduced by the free propagation along the segment

1'- 2 in Fig. 1. This phase factor can be calculated by matching Eq. (2.9) at position 1' (i.e.

Tr=I/2) with the field given by Eq. (2.5) after a reflection from the first spherical mirror. The

- %
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reflection for near normal incidence is simulated by the operator

91 = exp(- i (2.12)

It follows at once that
AIN

(p (2+l) [tan( ) + tan l (2.13)
2v0  2v202

In addition, after a full loop, the empty cavity solution Ap at position 4 is related to the solution at -

position 0 by the equation

A (4)= eA2 i" A(0) (2.14)
p p

Now we calculate the empty cavity resonances. The boundary condition for the elementary

radial solution or order p is _p.

E (p,Ot) = E (p,A/L,'t) (2.15)
p p

or

O PA/c
A(0) e Ap(4) (2.16)

p p

when expressed in terms of the modal amplitudes Ap. From Eqs. (2.16), (2.14) and (2.13) we

have
-- ~~ ~~ -- 1anl/f-) 1

.A 27tn + 2(2p+l) tan )+ t - (2.17)n,p C 2 22 ', -
2V0  2v 2

with n = 0, +1, ±2 ...... and p =, 1, 2 ...... The eigenfrequencies are labelled by two indices; an

axial index n and a transverse index p. The longitudinal intermode spacing is given by the usual

formula 27tnc/A while the frequency separation between adjacent transverse modes is

(O[tan-(") + tan-( 1 /f-1 (2.18)
n~+ ,PA 2v 2  2v 2

An important property of the modal functions Ap,1) is that for every value of rl they fom .-

an orthonormal set in the sense that

,.".,.'
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With the additional reasonable assumption that {AP (pT) Iform a complete set with respect to the

radial coordinate, these functions provide a useful basis for the expansion of any cavity field at

every point along the 11 axis. This property will play an essential role in the following

development.

3. The generalized Maxwell-Bloch problem: description of the model and the

steady state solution ~

3.1 Derivation of the equations

We extend the traditional description of the laser with the inclusion of several features that are

omidtted, by definition, from the plane-wave theory:

i) the diffraction caused by the finite transverse cross section of the field and by its radial

variations of amplitude and phase;

ii) the wavefront curvature imposed by the presence of reflecting spherical surfaces;

iii) the longitudinal and radial variations of the equilibrium population difference.

We do so in the context of the paraxial approximation and under the assumption of cylindrical

symmetry for the field and for the atomic variables. The latter restriction, in particular, is a

compromise dictated by the need for including transverse degrees of freedom with the lowest level

of analytic and numerical complexity. We recognize that this is not a very realistic setting for a

typical laser but, nevertheless, we expect that it will provide useful insights into the role of

transverse effects.



0
12 

%
One can model the effects of diffraction by adding a term of the form V F to the usual wave -

equation for the slowly varying amplitude F where ,-P'N

2 1
V = + (3.1) '

is the transverse Laplacian for an axially symmetric geometry. The curved reflectors affect the

boundary conditions indirectly by way of the dependence of the radial eigenfrequencies on the

radius of curvature of the mirrors (see Eq. (2.17)) as we shall discuss more explicitly below.

Finally, the longitudinal and transverse variations of the pump are reflected in the equilibrium value

of the population difference which is no longer uniform along the transverse direction as in the

plane-wave model. A

With these modifications the Maxwell-Bloch equations take the form

aF IlaF i D F 1a+ - (- +--) - LP (3.2a)
v , 4 2  p p ap

aP -(FD + (l+iS c)P (3.2b) .

a-(F P + FP) + D- X(prl)} (3.2c)

We select as the cavity reference frequency coo the p--O empty cavity resonance, wn,o, so that the ,5 "

slowly varying field amplitude F is related to the Maxwell field by

E(r,z,t)- (F(rz,t) e (ko + c.c.) (3.3)
2g, 2

where i is the modulus of the atomic transition dipole moment and y1 and yl are the polarization -, :

and population decay rates, respectively, and ko = cwo/c. The spatial coordinates Tj and p are defined

by Eqs. (2.3) with X replaced by X0 (the reference wavelength); t, v and CAC are defined by

- 8Ah

'S 
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x=±t v - , - AC (3.4)
Ly I AC

where (oA is the atomic transition frequency; the parameter "denotes the ratio y1/ y± and the function

X(p,ri) simulates the longitudinal and transverse variations of the pump. There is a good deal of

flexibility with the choice of X depending on the details of the excitation system. For definiteness

we select

LA

X(Pl) =  (p )  IlI < T- (3.5a)
0 otherwise

where LA denotes the length of the medium, and consider, as two possible models, the radial

functions
2

P-

j(p) = exp(- --- ) (3.5b)
2p 2-,p

and "5-
2

j(p) =2 exp(- - -) -I (3.5c)

2p2

In the first case the active medium is transparent at the outer boundaries of the pumped volume (this

model is plausible, for example, in the case of a four level system such as Nd:YAG), while in the

second a lowering the pump strength creates an absorbing regioi, such as one may find in a Ruby'

laser, for example.

A way to state the boundary conditions is to require that the Maxwell field at position rT--O
matches the field that has reached the position 7l=A/L after propagating one full loop through the

cavity. Formally this implies

E(p,O,,t) = E(p,A/Lt) (3.6a)

or, in terms of the slowly varying amplitude

2".4

P,.m '4-.
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F(p,0,t) = FpA/Lt0) A/c (3.6b)

Equation (3.6b) must be understood as the assignment that sets the slowly varying field amplitude

at the boundary Tl=O and at time T in terms of the amplitude that has just completed one loop

through the cavity according to Eq. (3.2), and in compliance with the appropriate reflections at the

curved surfaces. This type of boundary condition is especially appropriate in connection with the

numerical solution of Eqs. (3.2). In the following we carry out our analysis of the steady state and

of the linear stability in terms of a modal expansion of the field so that a different version of the

boundary conditions is required.

As our starting point we let

P(p,7r,,t) = e P(p,rI,.T) (3.7b)

in. where 80 is the offset between the unknown operating laser frequency and the reference frequency

wo in units of y_1 . We substitute Eqs. (3.7) into the Maxwell-Bloch equations (3.2) and integrate

over the radial variable with the help of the orthogonality integral (2.19). The result is the

following set of coupled equations for the modal amplitudes fy01 ,t) and for the atomic variables1I 7e

af 1 af - LdP(1)(-)
+ = I8nf - p(3.8a)

z = e(D + (+iA) P) (3.8b)

o  uioDD W sst PEqs.(3.Mc (3.8c)

where A e o co eq nr. The modal amplitudes obey the boundary conditions t o a e-

-5 A-L

pI
f +/,, R f - cI_ f /2p~,rl PYp-L,) (3.8d) .-

v P

in.
in-(D+ Ii)) 38)'

p._ _ F )+D ~pr) 38)"

i' -in
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where 8p - (conp-( 0 )A/c and R denotes the reflectivity of the mirrors; a brief outline of the 1

derivation of Eq. (3.8d) is given in Appendix A. Note that the sum in Eq. (3.7a) extends to all

nonnegative integers p. In practice, however, transverse modes with p greater than 1 or 2 suffer

significant diffraction losses typically because of intracavity apertures. We do not have provisions

in our treatment for describing this type of losses; me must keep in mind, however, that only very %.

few transverse modes are expected to play a significant dynamical role in the evolution of a real

laser. -

In steady state the atomic variables are given by

1 I A (3.9a)Pst X~st I + A2+ IF 1l2  
(39a

1+ A2
D- t = X I 2 (3.9b)1 +A 2+i ISt12

and the equation for the modal amplitudes becomes

P-i f +ccL(1-iA)Idp p A*(p,T) X(pI) (3.10)v0 , P 1 e.2+jTSt 2

where

F (pn) a ,(p,n) f (n) (3.11)
StP 

• 
P,-

P

Even the steady state problem, in general, offers formidable analytic difficulties. ImFortant

simplifications follow in the limit

oLA '
aLA-+0, T -0; 2C - - arbitrary (3.12a)

and

P

for all pAO and m=0, +1, +2,... The symbol T = -R denotes the mirror transmittivity. Equation

,,,,.,,., ,.,., ..., , ,.
"~r- F V"W'" V'% .' " '- I """J. - i ""w '%- -A': Hi -- " - " * . * -" "" - '*"" "* '" ---

"
' , , . -. ",
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(3.12a) is well known from earlier studies of optical instabilities in the plane wave regime2 6 .

Equation (3.12b) implies that the frequency separation between adjacent radial modes should be of

the same order of magnitude as the frequency spacing between longitudinal resonances, and

simultaneously excludes degeneracies or quasi-degeneracies between transverse and longitudinal

modes. The two conditions (3.12) taken together define the extended uniform field limit for the

chosen laser system. Of course, it is understood that the label "uniform field limit" should not be

taken literally. What is actually independent of TI, in this limit, is the set of modal amplitudes { fp}.

The field profile inside the cavity is assigned by the modal functions { AP) which, of course,

depend on the longitudinal coordinate ri.

The importance of the uniform field limit in this context rests on its ability to provide a strong

analytic contribution to the solution of the laser equations of motion and a deeper view into the role

that the many parameters play in setting the stationary and dynamical properties of the system.

As we shall prove below, the stationary state of the laser field in the uniform field limit is of X

the single longitudinal and transverse mode type; as a consequence, it follows that the empty cavity

eigenfunctions, in this limit, are also modes of the resonator in the presence of the active medium.

We now return our attention to the solution of the stationary modal equations (3.10) under

the conditions (3.12). The spatial integral of Eq. (3.10) yields

+1/2 +1/2

f (1/2) - f (-1/2) =i -2drl f + L(-iA) d rl fd p A* X st (3.13) '-V

-1/2 -1/2 0 1 l+ A + IF12

Assuming that 80 is of the order of T, the boundary conditions (3.8) in steady state can also

be cast into the approximate forms

. A-L
(p--0); f0(/2)- f0(-I/2)T1 T ±'c- f0(l/2) (3.14a)

^AL
l(p*0); f (1/2) f f(1/2) =(1-R e- i1e f f(1/2) (3.14b) .''

.,,'"_

"V-N
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If we combine Eqs. (3.14) with Eq. (3.12) we obtain

(p=O); f0(1/2) - fo(- 1/2) = T(1-i - - ± ) f0(12)=
T I C

+1/2 +1/2

i f'drlfo + aL(-iA)JS~ jdp pA :A 2+k ,2st (3.15a)
-1/2 -1/2 0 S

-^.L
-p at."-) f(121

pi p
(p*O); f fP ((/2) - fp(-1/2) =, I-R e- e c= 12

+1/2 +1/2

i d f+aL(biA) d fd p P* (3.15b)
-1/2 -1/2 0 +1 +St2

Equations (3.15) lead to the following conclusions:

(i) The difference f0(1/2) - f0(- 1/2) is of the order of T, so that f0 is uniform along the axial

direction;

(ii) the amplitudes fp with p#O is of the order of T. NO

Hence, it follows that in the uniform field limit a possible steady state solution is characterized by

the modal amplitudes f0 = 0(1), fp0, = O(T) and the cavity field configuration is of the TEM~o

type. •

The immediate consequence of these considerations is the state equation

LA

AL 1 Ao' T ) 2 * 5 * * %

+L 2C(lA) - dT,;dppx (3.16)T 7=C L fd d(p,) (o(n),-
I- =T='.~c AA 0I+'2+IA0(J)f(I 1  ii i-.

2L

for the modal amplitude f0. where we have taken Eq. (3.5a) into account. This can be split into real

and imaginary parts with the result

%

-"-C .

""S,

~ % * ~*~ * % * -. . . * ...- .. ? I.I
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LA

12 = C A0(p.rl)1 2"L " _ __ _ g

I = J f dl dp -2 (3.17a)
A LA 0 l+A2+ 1Ao(P,l) f0(1)12

2L

-=RA or 80=- s (3.17b)
I+o AC

where K = cT/AY_L denotes the cavity linewidth in units of y_. Equation (3.17b) is an alternative
form of the usual mode-pulling formula which remains unchanged in the uniform field limit even in

the presence of transverse effects.

The stationary state (3.17) is not unique because, depending on the gain parameter 2C, other

steady state configurations are also possible. In fact with a simple extension of the above

argument, as shown in Appendix B, one can derive the following more general result for a given

fixed value of p

2L

1=2C. -Jdf dpP. pk (3.18a)
A LA 0 l+A 2+IA f-1

K0

AC +  (3.18b)2 it 1+ .! "1+7.

where a 1 is the longitudinal mode spacing in units ofT± (x1 = 27tc/A). The steady state ,

configuration corresponding to Eqs. (3.18) is also of the single-mode type; here the modal .

amplitudes fp are vanishingly small in the uniform field limit while f = 0(1). Thus the solution

of Eqs. (3.18) represent a stationary state corresponding to the modal configuration A .

3.2 Discussion of the steady state .'S

Equations (3.18) represent the main results of this section; together with Eqs. (3.9) they

S...
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provide a complete specification of the steady state of a laser and its dependence on the many --
physical and geometrical parameters of the model. We note that Eqs. (3.18) generalize the results

of Ref. 24 and establish their domain of validity in moL. rigorous terms. The steady state formula

derived by Lugiato and Milani holds in the uniform field limit for the p--O mode and resonant

operation. In addition, it requires a flat pump profile and a large Fresnel number. To establish the

connection between these results in more explicit terms, we note that if the length LA of the

medium is much smaller than the Rayleigh length LTu0 , Eq (3.17a) can be put in the approximate a"

from

+4p
2

4 exp- 2p (1 )

= 2C Jdp P (3.19)

1 + - exp(- %

and if p/ >> 1, Eq. (3.19) can be solved explicitly with the result

1 =2C 710 In [I + (3.20)
4 I0 110 P-NJ"

This agrees with Eq. (4) of Ref. 24.

The integrals appearing in Eq. (3.18a) cannot be calculated in closed analytic form for
arbitrary values of the parameters. It is not di 'ficult, however, to calculate the threshold gain

parameter for the p=0 mode using the pump profile (3.5). In fact after setting fo--0 , Eq. (3.17

leads to

2) 0L A  L A  -

(2C\)= t (l+A2)."[t - tan-[ A L t (3.21)
2L1 0 Ii7 _ _

where

S
.....

• d . ! -: : b 1
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2 pp

Equations (3.21) with T1 = 1 and 2=0 yield the threshold gain related to the pump profile (3.5b);

with 't = 2 and T2=1 we obtain the corresponding result for the pump distribution (3.5c).

An important design parameter is the ratio V between the pump waist pp and the minimum

beam size '4%,1. It is clear by inspection that the threshold gain for laser action decreases as ',

increases, as it should be. The lowest threshold value corresponds to V -4 c and is given by the

formula

(2C)mn thr = (1+A2) (3.22)

for both pump models (3.5).

The most obvious difference between the two pump profiles given by Eqs. (3.5) is the

behavior of the threshold gain upon varying the parameter yi. In the presence of an absorbing ,

region (p >pd) the threshold gain diverges for a finite critical value x'c such that the denominator in

Eq. (3.21) vanishes. If instead the active medium is transparent at the edges of the pumped region,

the threshold gain increases monotonically and eventually diverges as W approaches zero. These

considerations are summarized in Fig. 2 for typical values of 710 and LA/L. [Note that in order to p

avoid excessive repetitions of the parameters in the figure captions, most relevant values are

tabulated in Table 1; additional comments are enclosed in each figure caption, as needed]

The behavior of the modal intensity as a function of the gain parameter allows some

interesting observations but shows no major surprises. For example, we looked carefully for the

possible presence of bistability near the threshold for laser action, as observed in some earlier

experiments31, but found no evidence of this behavior. Some typical steady state modal intensities

are shown in Figs. 3 and 4 for a resonant and an off-resonant case. It is interesting to note that. for

increasing gain parameter, the modal intensity of the radial sidebands can exceed that of the p--) I.

mode. This effect is related to the different transverse profile of the various radial eigenfunctions

U

.0e

.#. * ',tP.a.'jat - ~5U ~ ~~~p'~UU' U U'U~~U "e.
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and therefore is strictly a transverse effect. When the pumped region is sufficiently broader than

the waist of the TEM~o mode, higher order modes can take better advantage of the available gain

because of their greater modal extent (see Fig. 3). The effect is enhanced in the presence of a

detuning (Fig. 4) because of the increased coupling between the radial sidemodes and the atomic

line. Figures 3 and 4 correspond to a pump profile of the type given by Eq. (3.5b) with a

parameter xV = 10 (i.e. with a large pump waist relative to the beam size). In this case one expects

that the pump profile (3.5c) should yield rather similar results. Indeed the differences are small and

only quantitative in character.

We also expect that the shape of the pump profile should play a more significant role when

the ratio 2p/ 4 10 is closer to unity. A comparison between the steady state curves obtained from

Eq. (3.5b) with those resulting from Eq. (3.5c) is shown in Fig. 5. Here again the result is not
U,,

surprising if we consider that, in the latter case, the presence of an absorbing ring around the edges

of the medium is bound to affect the higher order radial modes more than it affects the TEM0

configuration.

It is also interesting to note that the crossing of the modal intensity curves is a transverse

effect which is less pronounced when the intensity profile of the beam becomes more homogeneous

in the radial direction, i.e. when pW/.r0>> 1. An example is shown in Fig. 6 for a pump profile of

the type (3.5b).

The dependence of the modal intensity on the detuning parameter 8AC is shown in Fig. 7 for

a set of parameters where more than one transverse mode can be above threshold for the same value

Of 5AC* In general, this result does not imply that more than one mode will be above threshold at

the same time because the presence of a given steady state alters the unsaturated gain distribution.

Based on past experience with the plane wave model 6g we expect that modes p=0 and p=l. under

the conditions of the figure, will compete and produce either discontinuous jumps (mode-hopping)

or undamped pulsations through a mechanism that was identified as a phase instability in the

plane-wave model. Naturally, this is a conjecture at this level; the issue can only be verified in the

S4'
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context of the linear stability analysis, as we shall discuss in the next section.

We conclude this section by noting the qualitatively similar behavior of the output intensity of

a CO 2 laser during a detuning scan, as shown in Fig. 8

4. Linear stability analysis

The starting point of our analysis is the set of equations (3.8) for the modal amplitudes and

for the atomic variables, together with the boundary conditions for the ring resonator. With the

laser in a steady state we ask whether fluctuations corresponding to the modal indices (n,p) can

grow exponentially out of noise. This is the usual picture behind the onset of unstable behavior.

The real part of the rate constant for this process yields the rate of growth of the unstable modes,

while the imaginary part measures the oscillation frequency resulting from the beat of the unstable

mode and the steady state field.

As our first step we map the coordinates rl and ct into the new pair of independent variables

71' and V according to the transformation

71=1
A-L

' = -- "(11+1/2) (4.1)

with the result that the new boundary conditions take on an isochronous form. Next, we linearize

the equations of motion (3.8) and obtain

d&f + ~ -i . .
- ib -al p p,1) 8-P (4.2a)71, v a"t' v P f...

- = -{[6F Dst+ PSt8D + (I+iA) P-) (4.2b)

1OF P+F 1 * p+ - +F F8P )+5131 D(4.2c)

where

.t.

'Ve",,_," ,',.",,." .. ,.-. .' .- ." . . '.. ,"-- ." .'. -.,,." ,," ,, .' .- " .' .. . .- .--- .. ,e :,. . -.- .. .. . "e -. "..".-'.-,,-.",t "e ' ", "', _,,..J,-. .,,,
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8F(p',=') A P(p,Tr') 8f (T',) (4.3)
P

In addition, of course, one must also include linearized equations for 8fP* and C* which are

complex conjugate of Eqs. (4.2a) and (4.2b), respectively. The boundary conditions are

- A-L ... i8 Oy i-'± ...j

8f (- 1/2,') = R e e 5f(1)2,t) (4.4)

as one can verify at once using Eq. (3.8d) in the new reference frame.

Following the standard procedure we introduce the ansatz

pe p (PTf') (4.5)

8P (P'1"-C') p*(PT)

8D (8 (p, 7') (4,

in the linearized equations (4.2); X denotes the linearized rate constant in units of y1. The equations

for the atomic fluctuation variables are algebraic in nature and can be solved at once with the result

8p(pl')= Tl(p,rl',) A P.(p,TV) &p P,(') +

JUP

T'(p'71")) E Ap,(pT) (,q) (4.6a) ,,

p U.

6p*(p,7')= T*(p,1 ,() A.' .

LT (') &Ap'( , ) -
'(rl')  (4.6b)--

where

T c3c - 24 (4.7a)
c c* -cc *

1 1 2 2

St.

77

IVYA
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cVI -c2C3 -
T 2  7 (4.7b)

ClC - C2C2

and

c Pl1') + .I1+ i,+ 1 .+Is 12  (4.8a) i .....

1 ....2(48 )'"

c2 .+ F (4.8b)

+
1 (P,/, -( st St)  (4.8c) -

3 St %

1 - P (4.8d)c4(P'Tl') =t 2 .t

The symbols c 1", c2 " etc. indicate the complex conjugate parameters of c 1 and C2, etc.; we

note, however, that in performing the complex conjugate operation we must handle X as if it were a

real variable, i.e. ci* is a function of X and not X*. The reason for this peculiar rule can be traced

back easily to the equations of motion for 5p and 5p* and to the ansatz (4.5).

At this point the linearized field equations become 0

-- _ ' TtPn , x ... .

p+ 8(p =i &P x cL p p A (p,W) T "(P." ',) xDaJ, --+ c P v 0.. "P

A .,rl) &P((Tr') + T (Pn',X) A.(pf') 8 I;(n') } (4.9a)
P' P' "2-.''

P, p

a 8 - cLLfdp p A ( * ,- ----
P P J

aTI 0

A.(p,'l ) 8p(r1') + T*(,r',) P (4.9 b) "

The appropriate boundary conditions take the form

~ ~ %%.-- %,, ,

'p -IN
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,, - ,

8(p (-1/2) = R e P -(1/2 ) (4.9c) -

where

- A-L
p =8- - (4.10)

Before taking the final steps with the calculation of the linearized eigenvalues it is convenient -

to introduce one more change of dependent variables whose main purpose is to transform the

boundary conditions to a standard periodicity form. This can be accomplished with the definitions

- (T+1/2) (lnR - i 8pa
S&p(rl') = v (7') e (4.11 a)

= Vp(il) e (4.11b)

because, as we can easily see with the help of Eqs. (4.9c) and (4.11), we have

vp(- 1/2) = v (1/2) (4.12a) ',-

v(- 1/2) = vp(I/2) (4.12b)

...-.-

The transformed field fluctuation equations take the form
C v c !"

+(i+i-8 -i 8Q) v +Xiv =-R2C f .JdppA'(p. l')

Ay ' AL p p p
± A 0

T(p,'X) ) Ap.(p,rI') Vp(T') e-., +

E -i (l'+/2)(8p,+ 8p)

(PT( l',) ) A;,(p,rl') Vp,(Tl') e + 2 (4.13)
PS.

P ,;?

with a similar equation for vp following from the complex conjugation of (4.13). .,

The required linearized eigenvalues cannot be calculated in closed form for arbitrary values of

the parameters in spite of the linear nature of Eq. (4.13) and its complex conjugate. However, in

the good cavity limit, K<<I, it is possible to develop a perturbative procedure whose end result is

the analytic derivation of the instability condition. Numerical calculations are needed only to carry-

-'V€* .1]:

,' ":.'.,,."-.:'.,".,:.-.-: ; :.:.'. .". 'c':.'.';", <-' --.--. "-'.," ",',',',",'o-,' -.'.'..'.--'~ x:S -
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out the quadrature of the final integral expression. Our strategy can be summarized as follows: by

taking advantage of the periodic nature of the boundary conditions (4.12), we expand Vp and Vp in

appropriate Fourier series over the interval - 1/2<51<1/2 according to the usual relations

vp iknL'I' (Yp(4.14a)-

n

* e G* (4.14b)
p n.p

n fl

where kn = 21rn/L (n = 0, ±1,±2 ....) and cn,p and O'np are complex coefficients; next we

construct an algebraic system of equations for the fluctuation amplitudes an,p and o'n,p with the

help of the orthonormality relation

1/2
i k L-rf ikMLn. 

5

drle e =
jdI e - Sn,m (4.15)

-1/2

Finally, we only need to solve the resulting linear algebraic problem to first order in 7.

Application of Eqs. (4.14) and (4.15) leads to

ia , -i )O + ( (.So) Cy.p + X.n An~ l p n,p n.p ',p' ."-.."

Ay f.*'7,

±
T ' ,  (4.16a)
np n,P .

-icC a* +O-i-6 + i 6Q)* + 'P (Y* ,
n n P Ay npn ~p n p

where

- - 2inc
cc n  ,= -_2tcT

4% n Ay

is the frequency separation between the n-th longitudinal resonance and the reference frequency

measured in units of y, and the coefficients Q and T are defined by

"VI'V N .' W..
06 J% - :d~ - ; -,' N

!;,v,5, y~ .v a. . v.=._ ¥ .X .;.-.. .... ...-.... :,...:,.,<. ,,,.;,,.?.X,£e- .- <.,.-f- < < -. . A



-- .- ~ ~ r-j-.~ -, ~ ~p.J f~~J wird- w'j - - - .- -.-

27

LA

p,()=- C rd'e~ ~L1(p +tl ) ( 8r.', ) (4.17a) n) x

ALA 0,-j

2L

LA

LA 0

A*,(~rf)(4.17b)

The solution of Eqs. (4.16) is equivalent to the diagonalization of the problem

Lv =X-v (4.18)

where the matrix L, whose definition is obvious from Eqs. (4.16), has the structure

L=L 0+i cL 1  (4.19)

and v is the column vector with components yn~p and cn,p*. Now we assume the good cavity

condition K<<l and proceed to evaluate the eigenvalues to first order in i. We assume also that the

longitudinal mode spacing tl=27tc/A and the atomic linewidth y± are of the same order of ".

magnitude. Hence, the good cavity condition

K ( T <<l

is equivalent to the uniform field condition T<<1.

We consider now the stationary solution

F5 (pTl') = A0(p,T') f0(Tl') (4.20)

for which &2 is of the order of K.

(a) Consider first the case p#O. We select two values of the indices n and p (say, n and P-

% %

,-. -.

,0 4
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, ..' ,,w

and assume that there be no accidental degeneracy of the type
c c :''1al+_5 =±"."(a n + -- p)A j (4.21) i

SAy L Ay1 I

for any n and p other than the chosen n and p. Under this condition the eigenstates of L have the

form

a = °.+ 0() = -° + I (1) (4.22a)

and

Fn. p = O(IK) (4.22b)

Y* = oJc) (4.22c)
n,p

Equations (4.22b,c) apply to n,p np. Consider now Eq (4.16a) with n,p - n, and let

=(0)+ - () i c + k x(I) (4.23)
n Ay I (4.23)I

After substitution of Eqs. (4.22) and (4.23) into Eq. (4.16a) we obtain

- i (-C& +..._ j.)o° .. = (0) 3 0) (4.24a) .%

nAy p np n"

and ,

K %~

where

LA

2L

-_ (i(0)) 2C dl'f p Tl(P,T1')-())  (4.24c)n,p AL 0

LA  0- ,--
2L .

Equation (4.24a) gives the non-degenerate lowest order eigenvalues, while (4.24b) gives their first
?,*% ,,%..,

order corrections.

%,.".,
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(b) Consider now the case p=O. We select a fixed value of n=n and note that the eigenvalue -

x(o) -a.
n

is doubly degenerate, as we can easily confirm by considering Eq. (4.16a) for or. o and Eq.

(4.16b) for a.Z0°. It follows that the corresponding eigenvalues are of the form %

a - .0 + O(k) (4.25a) %Ji

a (F(0)° + 0(i) (4.25b)
- .0 h. 0

ap = O(K) for n,p # n,O (4.25c)

a =O.00) for n,p # -n,O (4.25d)

If we now set (n,p) = (n,O) in Eq. (4.16a), and (n,p) = (-n,O) in Eq. (4.16b), and equate the first

order terms in K we obtain
(I+%L(1) n,0 .0(j(0)) 0(0) + nn0(0(0)) (*i(O) (4.26a)

h.O 'hO.f,0 --n,0 -R.0 7 %

(14.X(l)) a*(° ) ,. *()(o)) a*(o) + Tn.°()(o)) ( 0 ) (4.26b)

n,o T' -F.0 f-;o 'Fo. ..

These equations lead to ue first order corrections XM of the eigenvalues in the degenerate case. In

particular, in the limit LA<<L,70 and in resonance (8 AC= 0) we find the results already obtained b% "

Lugiato and Milani 24 .

If the stationary state is of the type

Fp(Pn'T) Aq(Pj,') fq (7') (4.27)

correspondinr single radial mode q, the above treatment needs only a few simple

modificatior Equations (4.16) still hold with 50 replaced by S 2q.The frequency offset SQ

given by Eq. k 18b) contains a large contribution and a correction of order K,

The unperturbcd eigenvalues [Eq. (4.24a)] contain only the large contributions and are given by

10 N

,'%.
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n(o) -_ i-an+ c P- 8q (4.28) -

and of course the symbol X(°) that appears in Eqs (4.24b) and (4.26) must be interpreted according %

to Eq. (4.28).

Now we consider the linearized stability problem in the full adiabatic elimination regime of i

the atomic variables (i.e. when y_., y >> c/A). Here again the general procedure needs only a few

minor modifications in order to fit the limiting situation. In fact, with reference to Eqs (4.2b) and P

(4.2c) the adiabatic elimination limit corresponds to setting both time derivatives equal to zero. In

this case the resulting expressions given by Eqs. (4.8) remain valid provided we set X--O. Thus the

linearized eigenvalues in this limit are still given by Eqs. (4.24b) and (4.26) with (0) formally .

equal to zero and T1 and T2 given by the simple formulas

(1+A2) (I -iA)
(1- i 7))X(st (4.29a)

T2(P'Ti) = (P) -22 2 (4.29b)(1 + A2+ ~Isl) .,

12
In this case XM1) depends on only by way of the modal function IA-t2 while, away from the U

adiabatic regime, it depends on the radial index also through the unperturbed frequency

-() [.

Another interesting limit is one in which the length LA of the atomic sample is much smaller than

the Rayleigh length Lil0 . In this case Eq. (4.24c) reduces to

nfP_- ()0) 2C 4 p exp(- %0)=D2-Ldp p e) 2L ) T(p,rl',X-- )) (4.30)
fl4T TfT PT

'0 0 "0 -

and in the expression for T1 given by Eqs. (4.7a) and (4.8), one must replace IFst I with the

to

U.:'

,'¢qN" "/,.) %,;-, ,2 --'€.-"-?-: .-?'.-2.:-:,..'-o...:,'-_-..:-.';,-..:-.''; .','_- .;'.-'-.''2' -.'.-: ',-'4.S
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expression -6

2  2%
I] I2 = 24exp(-2) Lq(-2p) f (4.31) %

110 110 110

It is important to remark that the gain parameter C in Eq. (4.24c) is related to the amplitude f5

of the stationary field, which appears in T1 through F by the state equation (3.18). In addition,

we note that, for correctness, the expression for A which is needed in calculating Ti should be

evaluated to order zero in K. Finally, because X(°) is a pure imaginary number, the instability

condition is given by the equation

Re V(1) > 0 (4.32)

5. Stability analysis: Numerical results %

The main results of the previous section can be summarized as follows:

i) In the extended uniform field limit (3.12a) and (3.12b) with a1 and yL of the same order of

magnitude, a single-mode steady state field characterized by modal indices n and p becomes

unstable if

Re X ( > 0 (5.1)
n,p

for at least a pair of values of the indices n and p.

ii) If p * p, Eq. (5.1) takes the explicit form

-I + Re (Dn'p (( 0))> I (5.2)
n.p

where 
%

LA

2L

(Dnp  (0 )) = 2C f d u' p p I Ap(pj')12 T,(p, ',(°)) (5.3)
LA  0

2L ,~'.','

'4... '.
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X(+ -8 i(c + 6 ) (5.4)Ay

and the function T1 is defined by Eqs. (4.7) and (4.8).

iii) If p ; , XMt) is the solution of the quadratic equation that results from the linear

homogeneous system (4.25).

iv) The instability threshold for the mode with indices n and p, also known as the second laser

threshold, is the value of 2C that satisfies the identity

-1 + Re t@n'P (X(0)) = 1 (5.5) a

'41 np

To avoid confusion between this threshold value and the threshold for ordinary laser action, we

denote the former by 2C(2) and the latter by 2C( ). I
The parameter space is much wider than in the case of the usual plane-wave theory.

Numerous geometrical and physical parameters play an important role in providing the conditions

for unstable behavior so that a complete scan of the relevant space is a monumental task. Here, in L

an attempt to aid our analysis and to provide some guidelines for future searches, we have 'a

identified the parameters that can be viewed as independent of one another, at least from a

theoretical standpoint. For the general detuned case, i.e. when BAB * 0, these are listed in Table 2.

In the resonant case, and with the additional restriction that the steady state field is of the TEMOO
type, the independent parameters are 2C, 710, WJ=pp/"rl0, 6co, yand LAIL; note thatco1= 8 1,2i. 'a

The numerical results collected in this section represent a typical cross section of data that we

have calculated in a fairly large size (but definitely not exhaustive) scan of the parameter space.
Undoubtedly, additional useful facts will emerge from future studies. For convenience we have

divided our survey into two subsections. The first relates to a resonant laser (8AC= 0); the secord

to a detuned situation.
't

a",,

A) Resonant lasers

_' -, .. , .. ,. ,, . . , ., . ,., ,,.,.9. ., , . . ., . . .. , , . , .. . . . , , ., , ., .. ,. .. . . , ., . ., , "



The instability threshold is rather sensitive to the cavity geometry. In fact, the second laser

threshold is a monotonic function of the transverse mode spacing, as shown in Fig. 9 where we

display this dependence for three values of y. On the basis of this result one can infer that long

resonators or cavities whose curved mirrors have large radiii of curvature should be more sensitive

to instabilities even in the vicinity of the threshold for laser action. In addition, active media with a

slow rate of population decay, relative to the decay of the polarization, are more unstable than those

with comparable rates of decay for the population and the polarization. This behavior is quite

different from what is predicted by the plane-wave theory where the axial mode spacing has ver'

little influence on the value of the instability threshold&e.

As expected, if the laser operates in a TEM4,0 configuration the first radial sideband (p=1) is -

more likely to become unstable than the higher order radial sidemodes (p=2, 3,...); this is

* illustrated in Fig. 10. The reduced influence of the higher order transverse modes on the unstable

dynamics is linked to their progressively larger cross section which causes the cavity field to see a

smaller unsaturated gain because the equilibrium population difference X tapers radially out in a

pre- assigned way. Furthermore, in practical devices, intracavity apertures provide an even more

* stringent selection mechanism by increasing the losses experienced by the higher order modes toA

A the point that they can no longer meet the ordinary threshold condition. 5

One of the key parameters that controls the appearance of low threshold instabilities is the

ratio between the transverse size of the active volume and the beam cross section. Figure I I shows

the large drop of the instability threshold that accompanies an increase in the parameter V' tor both

modes p=l and p=2. Figure 1 Ila corresponds to the pump model (3.5b), while Fig. 1 l b

v corresponds to (3.5c). This behavior is consistent with the results already shown in the previous

figures so that again, for example, mode p=2 tends to be more stable than mode p=1.

Furthermore, the presence of an absorbing region at the radial edges of the active medium (Fig.

g ~ ~ I I b) causes a lowering of the effective ratio between the transverse size of the gain volume and the

beam waist; hence, the stability of the system is enhanced in the case shown in Fig. I I b relative to

N,
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that of Fig. 11 a.
-I

B) Detuned laser

The effect of detuning is rather interesting also, although, as indicated in Table 1, a complete

survey of the various possibilities will require a much more extensive study than we have carried

out thus far. Figure 12 contains a composite map of the instability threshold values plotted as

functions of the detuning parameter SAC for four different off-resonant modes, under the

assumption that the steady state of the laser is characterized by the modal indices (n, 0). The

transverse modes (, 1) and (n, 2) exhibit the same relative stability properties as displayed in

previous figures, with mode (n, 2) always being more stable than mode (n, 1). This figure shows

also that transverse modes belonging to the nearest longitudinal mode (n-i) can play an important

role in the dynamics of this system. Their resonances are shown along the horizontal frequency % W.

axis of the graph by vertical bars which indicate that modes (n- 1, 1) and (n- 1, 2) are clustered

around the resonant mode and can easily become unstable as we vary the detuning parameter. -

Mode (n- 1, 2), in particular, happens to fall in the vicinity of the resonant mode and has a low

instability threshold for a fairly wide range of the detuning parameter. We recall, however, that in

real laser systems the losses of higher order transverse modes are higher than those of lower order

modes, so that, in practice, the resonances characterized by an index p equal to or greater than 2 are

likely to have no significant dynamical influence.

In an earlier paper dealing with the role of the Gaussian transverse profile on the dynamics or

a ring laser, Lugiato and Milani 24 proposed the surprising result that the Risken-Nummedal 6b c  . .-
-, f. '-

instability disappears if every field mode has a TEM0 structure. Their calculation envisioned a

ring laser operating in resonance and explored the possible existence of unstable axial modes with a S
'f"

different value of the longitudinal index. After assuming a flat pump profile (this gives the best

chance for the development of an instability, as shown by our Fig. 11) they concluded that no -

longitudinal sidebands would ever be unstable.

%-.-,
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If we consider that the theoretical threshold values for a Risken-Nummedal plane-wave

instability are already unreasonably high, this result is very surprising because it suggests that

transverse effects have a stabilizing action on laser dynamics. We confirm the results of Ref. 24 in

Fig. 13. In fact, on resonance ( -AC-0 ), the sidemode (n+l, 0) is indeed stable for all values of the

gain (the same conclusion holds for all other TEM00 modes). It becomes unstable, instead, for

sufficiently large values of the detuning parameter, as anticipated in Ref. 32, following a pattern

that is typical of the so-called phase instability of the plane-wave theory6 g. In the context of our

formulation we cannot introduce a clear-cut discrimination between instabilities of the amplitude -

and phase type because of the nature of the linearized spectrum of eigenvalues 3 3. However, the tm

behavior displayed in Fig. 13 is very reminiscent of the latter type of instability.

The combined message of our results is that the transverse profile of the field and of the r". JWI.

atomic variables does play an important role in the emergence of low threshold instabilities, but the

radial modes with the same longitudinal label as the operating steady state of the laser are the ones

that are most closely responsible for introducing output pulsations.

6. Conclusion and comments

With a suitable extension of the uniform field limit [Eq. (3.12)] we have succeeded in ;I.,

carrying out a detailed analytical study of the steady state and linear stability properties of a ring

laser containing a homogeneously broadened active medium. In this limited context we have been

able to incorporate the effects of curved reflecting surfaces and the possible lack of transverse

uniformity of the pump. The main claim of this paper is that these transverse effects can account ,at

least in good measure, for the emergence of low threshold unstable behavior.

We have identified the most critical parameters that affect the stability of this system.

According to our results, instabilities are enhanced by a flat pump profile relative to the transverse

shape of the field. To be more precise we found that if the ratio 2p/,hqjo becomes sufficiently

.*'. m
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large, the threshold for instability decreases dramatically and can be only a few percent higher than

the ordinary laser threshold. This is probably one of the most specific signs of the transverse

instability. In fact, longitudinal instabilities are favored in the limiting configuration p,,/h1 0--> 0

with very large values of the gain parameter C 17e, 24, while the transverse instabilities acquire a

dominant role in the opposite limit (pp/47l0--+ oo with a small value of C). In this sense, we can

distinguish between longitudinal and transverse in stabilities. The former type is, of course, a high

threshold phenomenon.

As already mentioned, each transverse mode with p#O is associated with only one

eigenvalue, in contrast with the situation that prevails in the plane-wave theory where two linearized

eigenvalues exist for each value of the longitudinal index n. This precludes a straighforward

distinction between amplitude and phase instabilities. The obvious cause is that the longitudinal

modes are distributed symmetrically on both sides of the resonant mode, while the transverse

resonances (p=l,2,...) lie only on one side of it.

Another significant difference between the present theory and the its plane-wave counterpart

is the basic role played by the modal functions in assigning a different spatial structure to the '

possible field configurations [compare the Ap(p,71) modes with the functions exp(iknLr) ] . One of

the immediate consequences of this fact is that all the field fluctuation variables are coupled to one

another to form an infinite system of linear equations [Eqs. (4.9)]. In contrast, the corresponding

fluctuation equations or the plane-wave theory6 g break-up into an infinite set of (2x2) blocks.

An important arid fundamental difference between our model and earlier plane-wave analyses •

is that our calculations predict the existence of unstable behaviors in the rate equation regime

(DPfi)t=0) and even in the limit when both atomic variables are eliminated adiabatically

(aP/at=DD/at=O). This eresult stands in striking contrast with the well known behavior of the S

plane-wave Maxwell-Bloch equations which are always stable in the rate equation and in the full
5

adiabatic elimination regime.

It is interesting to compare the setting and the results of this paper with a recent analysis by

.'7..ft
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Lugiato and Lefever 34 dealing with the spontaneous formation of space instabilities. An important

difference is that the low threshold temporal pulsations described in this paper require a radial-*," V

intermode spacing &ot of the order of the longitudinal mode spacing [i.e. 8wt= 0(1)]. The

emergence of spatial instabilities requires, instead, that the transverse modes have overlapping

profiles in frequency and this implies that 8o)1= 0(0).

In a sense this paper is complementary to the one cited in Ref. 34; of course, the medium is

active in our case and not driven by an injected signal, in contrast to the situation described in Ref.

34; furthermore the cavity geometry is of the ring type with two spherical mirrors, while the

resonator of Ref. 34 is a Fabry-Perot. Both studies, however, deal with the competition between

longitudinal and transverse modes. In our case the instability is accompanied by temporal

oscillations with a frequency of the order of the radial intermode spacing; in the case of Ref. 34, the

coexisting transverse and longitudinal modes are synchronous with one another and produce

stationary spatial patterns.
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Appendix A. Derivation of the boundary conditions (3.8d) b

With reference to Fig. 1, we represent the boundary conditions with the formal statement

A-L)
E(r, - [/2, t) = 91 . E(r, L/2, t - A4 (A.1)

C

where E is the cavity field, the coordinates z=-L/2 and z=L/2 correspond to positions 3' and 1,

respectively, P' 1-,3' is a propagation operator between the indicated points and IX is a reflection

operator that accounts both for the reduction in the field amplitude and possible curvature effects

upon reflection.

Next we introduce the slowly varying field amplitude as in Eq. (3.3) and, with the help of A

Eq. (A.1), we obtain

io Ac A A-L
F(r, - L/2, t) =e 91 F(r, L/2, t - -) (A.2)

Because we are interested in deriving boundary conditions for the modal amplitudes f,(zt), we let P

F(r,z,t) = e- A(r,z) f(z,t) (A.3)

and, from Eq. (A.2), we obtain
A-L r,

A-LAS
A (r,L/2) f (L/2,t - - (A.4)

SP P c

The action of the reflection operator is to scale each modal amplitude fp by an amount 'JR, where R

is the power reflection coefficient, and to apply a phase curvature to the modal functions A If we I
assume, for simplicity, that the phase mirrors are ideal reflectors and that the curved mirrors have.

the same reflection coefficient, Eq. (A.4) can be written in the form 'S.

, . - *. . . . . .*.. . . . .S . . . . . . . . . . . . . - - . - . . . . . . . . . • ,% ./= o..':..'......-" ..... ,.............-..,, *
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A-L -:
Z p( fp i%~~~~o.A/c 8 - fp/2 t  -L"

A-3') f L 2,t) e e C R A- )
P P c

1- .3%

91 1-*3, A P(1) (A.5),'

where A p(1) and A p(3') denote the modal functions at the indicated points. On the other hand,

from the properties of the modal functions (See Section 2) we have

- i-P A/c
SA(1) = A(3Y) e (A.6)

I-0' P P

where 0o is defined by Eq. (2.27), so that Eq. (A.5) can also be expressed in the form

A-L
Z i ~A/ci& -

AP(3) f (- L/2.t) =e 0 e A R LP(L/2, t- A ) x
P Pc

Ap3j (Y e i AC(A.7) ,.€

This leads to the required result e c

P P

p- ) " c''%

where we have used the definition 5P =(a coo) A/c.

.

-
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Appendix B. Derivation of Eqs. (3.18) -I

The starting point is provided again by Eqs. (3.10) and (3.11) for the modal amplitudes fp

and by Eq. (3.8d) for their boundary conditions. It is convenient to introduce a new set of

stationary amplitude functions gp such that

f (1) = gp(71) exp( i T I") (B. 1 )

P~ 4

Their space-dependent equation is

g(- 1/2) (I Rg(1) ex p A*(j) [I A/c- (B.) .

and the boundary conditions are

cast into the approximate form

(p p p p_12 p _-12= (-i-)g(/)(.a q

At the same time the spatial integral of Eq. (B.2) is '.

+ 1/2 d Ap gp .l2B

Tp p

p(/); gp(1/2) = L (1-iA) d -dppAp l P (B.6)At ~ ~ ~ ~ ~ ~ ~ -th(aeBiete.pta6itgalo)q (.)i

+ 1/2 0 l+P2 i , p,
/2 p-12 x I- . .% pA (.6

p P

121

:N

1/2 I+A + II A , 90
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If we combine Eqs. (B.5) and (B.6) we obtain

(p =p); g(1/2)- g-(- l/2)= T (I- i-2) g(1/2) =oL (I - iA)
p p T p

+1/2 A, g.

Jd dp P A! X (B.7a)l +A2+ 112
-1/2 0 12__I Ap, g 12

(p p); gp(1/2) - gp(-1/2)= (1 - Re ) gp(1/2) = aL(1 - iA)

+1/2 A .p,

fdl p p A* (B.7b)
-1/2 0 1+A2+ I A, g 12

Equations (B.7) lead to the following conclusions:

i) The difference

g-(1/2) - g-(-1/2)
P P 3

is of the order of T, so that g5 is uniform along the axial direction; -.

'.-
ii) The amplitudes gp with p ip are of the order of T.

Hence, in the uniform field limit a possible steady state solution is characterized by the modal

amplitudes gF = 0(1) and gr, = O(T) and the steady state is governed by the equation (3.18) ..

which generalizes the case of the TEMo steady state described by Eq. (3.17).

00
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Table 1

Values of the parameters used in the figures

f =/A = 0.2 all figures

LA/L = 0.2 all figures

R (reflectivity) = 0.9 all figures
.- 1,

po (scaled radius of curvature of the mirrors) = 5.0 Figs. 2,3,4,5,7,9,10,11 '-
= 4.1 Fig.6 
= 8.0 Figs. 12,13

ot1 (scaled free spectral range) = 1.0 Figs. 2,3,4,5,6,12,13
-2.0 Fig. 7

= 0.5 Fig. 11
variable Figs. 9,10

8AC (scaled detuning) = 0.0 Figs. 2,3,5,6,9,10,11
= 0.3 Fig. 4
variable Figs. 7,12,13

+lo (beam waist) = 2.14 Figs. 2,3,4,5,7,9,10,11
= 3.36 Fig. 6

- = 1.99 Figs. 12,13

&t)l (scaled radial frequency spacing)= 0.74 Figs. 2,3,4,5
= 0.91 Fig. 6
= 1.48 Fig. 7
= 0.37 Fig. 11
= 0.54 Fig. 12,13
variable Figs. 9,10

S=2pp//Ilo = 10.0 Figs. 3,4,6,7,9,10,11,12,13
= 1.7 Fig. 5
variable Fig. 2

.4.
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Table 2

Symbol Meaning

2C Unsaturated gain parameter A.-1

5 AC Difference between the atomic transition frequency and the reference

cavity resonance in units of

Tlo  Rayleigh range of the field profile between the curved mirrors. ,

Ratio between the waist of the pump medium and the beam waist in the
region between the curved mirrors.

80) Separation between the (n,1) and the (n,O) cavity resonances in units of

Ott Cavity free spectral range.

R Power reflectivity coefficient of the curved mirrors. .-"'

y Ratio between the population and polarization relaxation rates.

LA/L Ratio between the length of the active medium and the distance between
the curved mirrors.
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Figure Captions
-I

1. Schematic representation of the ring cavity. The entire length of the folded resonator is A; aZ"

the length of the active medium is LA and the separation between the spherical mirrors is L. Point 0

marks the origin of the reference system that measures the position along the axis of the cavity, -

while point 4 denotes the end of a full loop. Points 1 and 1', 3 and 3' denote the longitudinal

positions just before and after reflection, respectively. Point 2 is located at half a round rip.

2. Ordinary laser threshold gain plotted as a function of the parameter Nf = 2p/-tT'l0 for (a) a

gain profile of the type given by Eq. (3.5b) and (b) for the gain profile of Eq. (3.5c). As expected,

an increase in the transverse dimension of the excited volume leads to a lower threshold gain in

both cases.

3. Dependence of the steady state output intensity on the gain parameter 2C [Eq. (3.18a)] for (a) •

mode p=O, (b) mode p=l, (c) mode p=2. The gain profile of the medium corresponds to Eq. ,

(3.5b). The larger output intensity acquired by mode p=l relative to p=O for 2C greater than about

2 is a consequence of the larger modal volume of the higher order modes which providesa better ,

match with the pumped medium.

4. Same as Fig. 3 but with a detuning parameter 8AC= 0.3 which is 30% of the chosen free

spectral range (cx1 I) and almost one half of the separation between adjacent radial modes •

(,w 10.74).

5. Dependence of the steady state output intensity on the gain parameter 2C [Eq. (3.18a)) for a •

medium characterized by the gain profile (3.5b) for curves (a) and (b), and by the profile (3.5c) for .

curve (c). Curves (a) and (b) correspond to p--O and p=l, respectively- curve (c) corresponds to

p=O, The chosen value of W (V=l.7) simulates a thin column of active medium. As expected, in

, .

,, ,,
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this case the presence of an absorbing region at the radial edges causes a significant decrease in the

output intensity of the p--O mode (the curve for the mode p=l is out of scale).

6. The dependence of the output intensity on the gain approaches the qualitative behavior of the -

plane-wave theory when the transverse profile of the beam becomes more homogeneous in the

radial direction. Here we have increased both the beam waist and the width of the pumped region

relative, for example, to the values used in Fig. 4. Note, however, that the parameter W is the same

as in Fig. 4 (V=10). The gain profile is given by Eq. (3.5b).

7. Dependence of the modal intensity on the detuning parameter. Curve (a) shows the behavior

of the mode (n,p--O); curve (b) corresponds to the mode (n,p=1) and curve (c) corresponds to

(n+l,p=0). Note that the free spectral range is "l=2 and the separation between adjacent radial

modes is &o1=1.48. The gain profile is given by Eq. (3.5b).

8. The output intensity of a conventional CO2 laser as a function of the cavity length. Curves

(a) correspond to the laser operating in two consecutive TEM~o meds and curve (b) to a TEM0I 10

mode. Additional studies will be needed to determine if the observed bistability is the result of 5

hysteresis in the piezoelectric ceramic driver of the cavity mirror, or if it is intrinsic of the dynamics
of the system.

5,

9. The dependence of the second laser threshold on the separation between adjacent radial

modes for (a) y = 2, (b) y = 1, and (c) y = 0.1. The gain required to produce an instability of the

p=l mode in the presence of a p=O steady state is measured in units of the ordinary threshold gain.

Note that in all cases shown here the instability threshold is only slightly higher than the first laser
. %4

threshold (2Cf2)/2CM') is close to unity) when the separation between radial modes becomes

progressively smaller. The gain profile is given by Eq. (3.5b).

5,% %
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10. Dependence of the second laser threshold on the radial mode spacing 5co1 for (a) p=l, (b)

p=2, and (c) p=3. As expected, the lowest radial modes are the most sensitive to the appearance of

unstable behavior. The gain profile is given by Eq. (3.5b).

11. (a) Dependence of the second laser threshold on the parameter x=2pp/qri0 for (a) p= l and

(b) p=2. The pump profile corresponds to Eq. (3.5b).

(b) Same as Fig. I la with the pump profile given by Eq. (3.5c). These results show that the

instability is favored when the cavity is designed to operate with a large value of the parameter W.

12. Dependence of the second laser threshold on the detuning parameter for a number of radial

modes; (a) corresponds to (n, p=l), (b) to (n, p=2), (c) to (n-I, p=l), and (d) to (n-l, p=2). The
.,

pump profile is given by Eq. (3.5b).

13. Instability domain (to the right of the solid line) for the radial mode (ii+1, p--O). As shown ,

analitycally in Ref. 24, this radial mode cannot become unstable under resonant conditions. For

sufficiently large values of'8AC and appropriate values of the gain parameter, this radial mode S

becomes unstable through a mechanism that is reminiscent of a phase instability.
' ".4..'
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Stimulated Raman scattering from hydrogen molecules

We have carried out systematic theoretical studies of stimulated Stokes emissions from'
gaseous hydrogen molecules irradiated by a frequency-doubled Nd:YAG laser. Our objective is to
investigate the evolution of the transverse profiles of the laser and Stokes fields along the sample
cell, the spatial distribution of the Stokes emission, and the energy flux exchanges between the two
interacting fields. This project was motivated by some experimental results obtained by Dr. Y. S.
Liu at the General Electric Company. In his experiments Dr. Liu observed that under tight focusing
arrangements a single-mode laser produced a ring pattern of Stokes emission at a pressure of 60
psi. For increasing sample pressure, he also noted the appearance of a central peak in the Stokes
radiation, followed by a gradual fading of the ring pattern.

In our theoretical simulation we assume that the sample cell has a cylindrical geometry' and 0
that the molecular vibration, approximated by a damped driven classical harmonic oscillator, has
reached a quasi-stationary state under the action of the slower varying field envelopes. In this case"_/,
the steady-state fields equations take the following form:

IFS icX g i5 2
-,F_ = V±Fs + - (l+ - ) IFLI Fs (Ia)
0r 4 ± p 1+2 •

= L V.IF L - a P~g (I - i8) I Fs12 FL  (lb) _,"

In Eqs. (1) ca and 03 are constants related to the ratios of the frequencies and indices of refraction of
the Stokes and laser fields. The symbol 5 is a detuning parameter the measures the deviation from
the resonance transition and g is a gain factor, proportional to the number density of the molecules.

We have solved this set of equations numerically for various values of the paramaters. A
brief summary of the results is given below:

0

1. For a large input beam waist only a central peak is obtained in the Stokes emission at .
the exit of the sample cell. In this case, generally, the spatial pattern of the transmitted laser field
shows both a central peak and a ring-shaped structure. For a smaller input beam waist a ring
structure appears in the spatial distribution of the Stokes radiation and the energy transfer is so
complete that the laser field is totally depleted.

2. If the Stokes wavelength is in resonance or shifted to the red side of the molecular 0
transition, no ring pattern develops in the Stokes emission. This feature becomes evident only
when the Stokes radiation is blue-shifted relative to the molecular transition.

3. In order to simulate the effect of varying pressure we have investigated the dependence
of the solutions on the gain parameter. For appropriate selection of the remaining parameters of
the system, a ring pattern appears for small gain; for larger gain values the central peak begins to 0
develop and eventually becomes a dominant feature of the spatial distribution of the Stokes
emission. These results, as well as item 1, are consistent with Liu's experimental observations. ,. ,

4. The ring pattern in the Stokes emission may disappear when the input laser intensity .-.

becomes sufficiently small. On the other hand this pattern is insensitive to the weak level of the
Stokes intensity assumed at the entrance of the sample cell. 01

t~. *
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Miscellaneous Theoretical Results

1. We have completed a theoretical and experimental analysis of the behavior of
inhomogeneosly broadened ring lasers. The results of this investigation include the quantitative
analysis of the behavior of the self-pulsing frequency as a function of the most important control
parameters and a study of the pulsation waveforms. In a paper published in the Physical Review A
by Tarroja, Abraham, Bandy and Narducci we have shown that heterodyne and homodyne spectra
together with phase-spae plots can be useful in categorizing the periodic and chaotic behavior of
such systems. The theoretical model, developed in earlier studies in collaboration with Lugiato of
the University of Milano (presently at the Polytechnic Institute of Torino) is successful in
explaining a large number of experimental observations carried out in our laboratories.

2. Albano has implemented new techniques for calculating dimensions and entropies from
digitized data. There is increasing evidence that broad-band laser spectra may be a symptom of
dynamical chaos, while similarly broad spectra in amplified spontaneous emission may only be the
reflection of stochastic noise.

3. Yuan has completed a study of the time evolution equation for the density matrix of a driven
Morse oscillator coupled to a bath of harmonic oscillators. The results show that the expected
hysteresis, which is typical of classical calculations, does not appear in the context of quantum
mechanical calculations. On the other hand, bistability is manifested in the bimodal population
distribution attained by the nonlinear oscillator. Distributions of this type have ben observed by
Bloembergen and others. Time series of the oscillator energy show increasingly more complicated
behavior as the driving intensity increases.

4. New results have been obtained by Yuan in the study of the quantum behavior of a
dynamical system which is known to exhibit classical chaos. In particular, we have studied the
dissociation dynamics of a nondissipative, laser-driven Morse oscillator as a prototype of IR

- multiphoton dissociation of molecular systems. In the classical treatment of this problem we found
primary resonances with winding numbers equal to 1/n (where n is a small integer), corresponding -
to the fundamental and overtone transitions of the Morse oscillator. Furthermore, an infinite
sequence of secondary resonances are generated as a result of the interaction of 1:1 and 1:2 primary
resonances. We have found also that the dissociation half line near the threshold of global
instability follows a power law relation, with the critical exponents in close agreement with those
predicted by the standard map. This fact, the dissociation rate and and the dissociation fractions are
amenable to a direct comparison with experimental and quantum theoretical results.

5. We have used calculations of the dimension of strange attractors, correlaticn functions and
higher order coherence properties to analyze and identify the nature of the dynamical or stochastic
causes of intensity fluctuations in lasers and amplified spontaneous emission sources. We have
obtained experimental data from long amplifiers and unidirectional ring lasers. A preliminary -
account of these techniques was included in M.H.F. Tarroja's PhD Dissertation.

6. We have developed and analyzed a model for bidirectional homogeneously broadened ring
laser such as should describe our previous experiments in CO2 lasers. We have found new results
for time-dependent periodic and chaotic solutions and we have identified the boundaries for stable
operation. We have also extended the traditional models of the single mode homogeneously
broadened ring laser to new operating conditions and found new characteristic behaviors. We have

• .analyzed a model of a laser with saturable absorption under conditions in which the absorber and
amplifier media have different resonant frequencies and when the cavity is detuned from the center
frequency of the active atoms. The results of our calculations predict both bistable and unstable
solutions.

-*
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7. We have implemented a modification of the Grassberger-Procaccia algorithm for calculating
the dimensions of a strange attractor using the singular value decomposition techniques of
Broomhead and King. This new method is especially useful in verifying if a dynamic attractor is
truly fractal over all scale lengths.

Experimental Results

1. Following a theoretical suggestion by P. Mandel that a laser swept from below to above
threshold would display discontinuous jumps and hysteresis, Tredicce and Scharpf have produced
an experimental demonstration of this effect with an Ar+ laser. Because the original theoretical
proposal was phrased in such terms that a quantitative comparison was not readily possible,
Tredicce developed a new theoretical description of this process and obtained good agreement
between the experiments and the results of his calculations. These investigations have been
published in Optics Communications. Lippi, Hoffer and Abraham, at Bryn Mawr, are
investigating the same effects in He-Xe and He-Ne ring and Fabry-Perot lasers.

2. By conu-olling the level of losses inside tha cavity of an Ar+ with the help of an acousto-optic •
modulator, Tredicce has studied the spectral behavior of the laser output. The result of an analysis
carried out with a Fabry-Perot interferometer has shown that, as a function of decreasing losses, at
first the laser operates in a single mode, then a second mode appears, and finally a third mode also
tries to exceed its threshold condition. At this point, usually, chaotic-like behavior sets in. Further
investigations are in progress to clarify the nature of the broad-band spectral features.

3. The Drexel Quantum Optics Group has completed construction of two CO2 lasers. The first
operates with a power output of about 15 Watts, and is used mainly to study transverse effects in
laser instabilities. The second laser is a low power (1-2 Watts) sealed-off model which operates as
a reference source for heterodyne measurements.

4. We have carried out research to seek improved characterization of both ring and Fabry-Perot _
laser behaviors. We have measured power spectra of output intensity and digitized the intensity
pulsations using the spectrum analyzer and Lecroy fast transient digitizer which have been
purchased under the subcontract to Bryn Mawr. Detailed studies of the digitized data have provided
new ways to measure chaos using correlation function, and intensity statistics.

5. Gioggia, Abraham and their consultant Lange (from the University of Hanover, FRG) have
analyzed the Fabry-Perot laser searching for the recently predicted regions of bistability and
instability in the laser frequency near the Lamb-dip region. Considerable progress has been made in -
understanding the data. A paper containing these results will be published in the special issue of
the Optical Society of America devoted to laser instabilities.
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Special Activities

1. Abraham Co-Chaired a Symposium on Chaos which was held in Quebec as part of the 1986
SPIE Meeting. The Symposium ran for two days and featured a program of invited and contributed
talks from practically all the major contributors in the area of laser instabilities [Arecchi, Abraham, ,-

Boyd, Casperson, Chrostowski (the second Co-Chairman), Lugiato, Harrison, Narducci,
Tredicce, Weiss, and several others]. Because many of the participants were also involved in the
joint CLEO/IQEC meeting in San Francisco, this Symposium provided the opportunity to fine tune
some of the presentations that were scheduled to be given to a much broader audience within a fewdays.-" -

2. In the Quebec Symposium on Chaos .Abraham gave an overview of ways to characterize
chaotic phenomena in lasers, and discussed new ways to measure the dimensionality of an attractor
ard to characterize chaotic behavior in dynamical systems.

3. In the same Symposium Lugiato and Narducci proposed a new classification scheme for
labelling the unstable behaviors that arise in laser and laser-related systems based on the concepts of
amplitude and phase instability. Their work is limited to the plane-wave approximation, but it
represents a significant improvement relative to earlier approaches based on the concepts of single
and multimode operation.

4. Tredicce discussed a number of peculiar instabilities observed in CO2 lasers in collaboration
with his Florence colleagues. He attributed the appearance of these pulsations to transverse effects
and proposed a phenomenological description based on the concept of intensity-dependent cavity
damping rate; the qualitative agreement of the resulting theoretical analysis and the experimental
results is quite remarkable. The theoretical analyses leading to these results were carried out jointly
by the Bryn Mawr and Drexel groups.

5. Abraham, Mandel, and Narducci have just completed a full length review paper on Laser
Instabilities. This article is in press and will appear as part of the series Progress in Optics. The
manuscript, 420 typewritten pages long, consists of 10 chapters and more than 800 references.

6. A volume of lecture notes on Laser Physics and Instabilities, by Narducci and Abraham, is
in press by the World Scientific Publishers. This work is based on the lectures given by the authors
at a Summer School in Laser Physics held in Changchun, China, in August 1985.

7. Abraham, Boyd, and Arimondo organized a Conference entitled Optical Instabilities II which
was held in Italy in July 1987. Narducci was a member of the program committee.

8. Narducci was elected Fellow of the American Physical Society for his theoretical
contributions to Quantum Optics and especially optical instabilities.

9. J.R. Tredicce and D.K. Bandy are co-editors, with A. Oraevskii of the Lebedev Institute of
Moskow, of a special issue of the Journal of the Optical Society of America devoted to recent
progress in the nonlinear behavior of laser systems.

10. J.M. Yuan was the organizer of the "Chaos in Molecular Systems" Symposium of the '86
International Laser Science Conference held in Seattle, Washington, Oct. 1986.

I1. J.M. Yuan was one of the organizers of the XV International Colloqium on Group
Theoretical Methods in Physics held at Drexel University, Oct. 1986.
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12. N.B, Abraham, L.M. Narducci and J.M. Yuan gave invited talks at the International
Workshop Optical Instabilities II held at I1 Ciocco, Italy in July, 1987.

13. N.B. Abraham and L.M. Narducci were among the lecturers at a NATO Summer Institute on
Laser Physics. ,

14. N.B. Abraham was promoted to the rank of Full Profesor at Bryn Mawr College.

15. L.M. Narducci was nominated Francis K. Davis Professor of Physics and Atmospheric
Science at Drexel University

16. L.M. Narducci has become a member of the Center for Advanced Studies at the University
of New Mexico, Albuquerque.

17. J.M. Yuar. was an invited speaker at the 2nd International Laser Science Conference, held in
Seattle, Washington, Oct., 1986.

18. J.M. Yuan was an invited speaker at the Telluride Summer Research Institute on NonlinearDynamics, June 1987.

19. J.M. Yuan was a Symposium Leader at the Sanibel Symposium held at Marineland, Fla.,
March, 1987.
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